Smooth Support Vector Machine for Suicide-Related Behaviours Prediction
نویسندگان
چکیده
منابع مشابه
Least Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملsiRNA Efficiency Prediction Using Support Vector Machine
RNA Interference (RNAi) is a selective gene silencing mechanism initiated by double stranded RNA (dsRNA). The short RNA species called siRNAs are formed from dsRNA, which can degrade the messenger RNA (mRNA). This knockdown prevents mRNA from producing amino acid sequences which are responsible for gene expression. Thus siRNA alters the regulatory role of mRNA during gene expression by translat...
متن کاملSoftware Defect Prediction using Support Vector Machine
developing a defect free software system is very difficult and most of the time there are some unknown bugs or unforeseen deficiencies even in software projects where the principles of the software development methodologies were applied care-fully. Due to some defective software modules, the maintenance phase of software projects could become really painful for the users and costly for the ente...
متن کاملSSVM: A Smooth Support Vector Machine for Classification
Smoothing methods, extensively used for solving important mathematical programming problems and applications, are applied here to generate and solve an unconstrained smooth reformulation of the support vector machine for pattern classification using a completely arbitrary kernel. We term such reformulation a smooth support vector machine (SSVM). A fast Newton-Armijo algorithm for solving the SS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical and Computer Engineering (IJECE)
سال: 2018
ISSN: 2088-8708,2088-8708
DOI: 10.11591/ijece.v8i5.pp3399-3406